

The Pummerer-type reaction mediated ring-opening of 2-alkyl substituted 1-[(2-methoxyethoxy)methoxy]-2-(phenylsulfinyl)cyclopropanes

Manat Pohmakotr,* Panawan Moosophon,† Somchai Pisutjaroenpong, Patoomratana Tuchinda and Vichai Reutrakul

Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand Received 12 February 2001; revised 2 March 2001; accepted 1 May 2001

Abstract—α-Lithiated 1-[(2-methoxyethoxy)methoxy]-2-(phenylsylfinyl)cyclopropane reacted smoothly with alkylating agents to afford the corresponding α-alkylated cyclopropylsulfoxides, which underwent the Pummerer-type reaction mediated ring-opening at low temperature (-78°C) by employing TFAA/Pr $_2^i$ NEt/CH $_2$ Cl $_2$ to give mixtures of β-(phenylthio)-α,β- and γ,δ-unsaturated aldehydes. © 2001 Elsevier Science Ltd. All rights reserved.

Vicinally donor–acceptor substituted cyclopropanes are of interest due to their synthetic utilities as three-carbon building blocks via ring-opening reactions. Ring-cleavage of these types of cyclopropanes can be usually accomplished by Lewis acid, thermal or oxidation conditions. In connection with our ongoing interest in developing new synthetic methods based on vicinally O,S-disubstituted cyclopropanes, we report herein that the α -sulfinyl carbanion 2 derived from trans-1-[(2-methoxyethoxy)methoxy]-2-(phenylsulfinyl)-cyclopro-

pane (1)⁶ could be alkylated to give the corresponding alkylated products 3, which smoothly underwent the Pummerer-type mediated ring-opening reaction to give mixtures of α,β - and γ,δ -unsaturated aldehydes 4 and 5 (Scheme 1).

The α -sulfinyl carbanion **2** could be generated from *trans*-cyclopropylsulfoxide **1** (as a 1:1.5 mixture of diastereomers) by treatment with either *n*-butyllithium or lithium diisopropylamide in THF at -78° C for 1 h.

Scheme 1.

Keywords: Pummerer reactions; cyclopropanes; sulfoxides; lithiation; α-sulfinyl carbanions; unsaturated aldehydes; ring-cleavage.

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)00723-7

^{*} Corresponding author. Tel.: 066-02-2461358, ext. 1508; fax: 066-02-2477050; e-mail: scmpk@mahidol.ac.th

[†] Taken from an M.Sc. Thesis by P.M., Mahidol University, 2000.

Quenching of the pale yellow solution of the expected carbanion **2** with a saturated aqueous ammonium chloride solution led to the recovery of *trans*-cyclopropylsulfoxide **1** in good yield. The retention of the configuration at the α -carbon adjacent to the sulfinyl group implied that the structure of the anion **2** was as shown in Scheme 1, in which the complexation between lithium and oxygen atoms of the MEM group was assumed to occur. The reaction of the anion **2** with methyl iodide (1.1 equiv.) at -78° C at room temperature overnight provided the expected methylated cyclopropylsulfoxide **3a** in 70% yield as a 1:1 mixture of

diastereomers, due to the chirality on sulfur. The *trans*-stereochemistry of **3a** was determined unambiguously by NOE experiments. The alkylation of the anion **2** with other alkylating agents afforded moderate yields of the alkylated products **3b**–**g** as diastereomeric mixtures, as listed in Table 1.

Treatment of 3a with 2 equiv. of trifluoroacetic anhydride (TFAA) in dichloromethane in the presence of N,N-diisopropylethylamine at -78° C for 30 min followed by quenching of the reaction mixture with an aqueous saturated sodium hydrogen carbonate solution

Table 1. Preparation of compounds **3** and their Pummerer-type mediated ring-opening employing TFAA/Pr₂ⁱNEt/CH₂Cl₂ at -78°C

3			4 and 5	
RCH ₂ X	3 (diastereomeric ratio) ^{a,b}	% Yield ^c	Ratio of 4 (<i>E</i> : <i>Z</i>): 5 (<i>E</i> : <i>Z</i>) ^{b,d}	% Yield ^c
CH ₃ I	3a , R=H (1:1)	70	4a , 100 (70:30)	62
$n-C_6H_{13}Br$	3b , $R = C_5 H_{11}$ (1:1:3)	62	4b , 79 (63:37): 5b , 21 (20:80)	83
$n-C_7H_{15}Br$	3c, $R = C_6H_{13}$ (1:1:4)	59	4c , 86 (79:21): 5c , 14 (35:65)	75
$n-C_{11}H_{23}Br$	3d , $R = C_{10}H_{21}$ (1:3.7)	60	4d , 78 (78:22): 5d , 22 (26:74)	84
$n-C_{15}H_{31}Br$	3e, $R = C_{14}H_{29}$ (1:1.3)	60	4e , 74 (75:25): 5e , 26 (12:88)	77
PhCH ₂ Br	3f, $R = Ph(1:1.3)$	65	4f , 84 (68:32): 5f , 16 (36:64)	69
PhCH=CHCH ₂ Br	3g, R = PhCH=CH (1:1.2)	63	_e	_e

^a Determined by integration of the -OCH₂O- resonances in the ¹H NMR spectra (300 MHz) of the isolated products.

^b All products were fully characterized by spectral data (IR; ¹H and ¹³C NMR; MS) and elemental analyses.

^c Yields of purified products by preparative thin-layer chromatography (PLC, SiO₂).

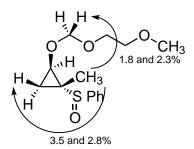
^d Measured by the integration of the resonances of the aldehyde protons. The stereochemistries of (*E*)- and (*Z*)-isomers of both compounds **4** and **5** were determined by NOE experiments.

^e A complex mixture of products was obtained.

at the same temperature provided **4a** in 62% yield after preparative thin-layer chromatography (PLC) as a 70:30 mixture of (E)- and (Z)-isomers. On the other hand, the reaction of **3b** with TFAA/Pr₂'NEt in CH₂Cl₂ under the same conditions afforded a mixture of the expected α , β - and β , γ -unsaturated aldehydes **4b** and **5b**, respectively, in 83% isolated yield as a mixture of (E)-and (Z)-isomers. Likewise, under the standard conditions, the cyclopropylsulfoxides **3c**-**f** furnished mixtures of **4c**-**f** and **5c**-**f** in moderate to good yields (Table 1). PLC separation of the mixtures of **4b**-**f** and **5b**-**f** gave pure **4b**-**f** in 57–66% yields. Unfortunately, β , γ -unsaturated aldehydes **5b**-**f** could not be obtained in pure forms.

A probable mechanistic pathway for the formation of unsaturated aldehydes 4 and 5 depicted in Scheme 2 was proposed involving the Pummerer-type reaction mediated ring-opening of cyclopropyl-sulfoxide 3. Thus, trifluoroacetylation of 3 gave an intermediate 6, which underwent spontaneous ring-cleavage at -78° C leading to a thionium intermediate 7. Subsequent deprotonation of 7 with N,N-diisopropylethylamine via pathways (a) and (b) afforded the α,β - and β,γ -unsaturated aldehydes 4 and 5, respectively, with the thermodynamically more stable isomer 4 as the major product.

In summary, we have demonstrated the Pummerer-type reaction mediated ring-opening of α -alkylated 1-[(2-methoxyethoxy)methoxy]-2-(phenylsulfinyl)cyclopropanes 3, which are vicinally donor-acceptor cyclopropanes, to give mixtures of unsaturated aldehydes 4 and 5. To our knowledge, this is the first report for the ring-opening of the cyclopropane ring containing vicinal O,S-substituents under the Pummerer conditions at low temperature (-78°C).


Acknowledgements

We thank the Higher Education Development Project: Postgraduate Education and Research Program in Chemistry for partial support. P.M. is grateful to the Development and Promotion of Science and Technology Talent Project (DPST) for a scholarship. V.R. thanks the Thailand Research Fund for the award of a Senior Research Scholar.

References

(a) For a review, see: Reissig, H.-U. Top. Curr. Chem. 1988, 144, 73–135; (b) Marino, J. P.; Long, J. K. J. Am. Chem. Soc. 1988, 110, 7916–7917; (c) Tanaka, K.; Matsuura, H.; Funaki, I.; Suzuki, H. J. Chem. Soc., Chem. Commun. 1991, 1145–1146; (d) Tanaka, K.; Minami, K.; Funaki, I.; Suzuki, H. Tetrahedron Lett. 1990, 31, 2727–2730.

- (a) Shimada, S.; Hashimoto, Y.; Saigo, K. J. Org. Chem. 1993, 58, 5226–5234 and references cited therein; (b) Sugita, Y.; Kawai, K.; Hasoya, H.; Yokoe, I. Heterocycles 1999, 51, 2029–2033; (c) Graziano, M. L.; Iesce, M. R.; Cermola, F. Synthesis 1994, 1944–1950; (d) Horiguchi, Y.; Suehiro, I.; Sasaki, A.; Kuwajima, I. Tetrahedron Lett. 1993, 34, 6077–6080; (e) Davies, H. M. L.; Hu, B. J. Org. Chem. 1992, 57, 3186–3190.
- (a) Reissig, H.-U.; Buchert, M. Liebigs Ann. 1996, 2007–2013; (b) Barluenga, J.; Tomas, M.; Lopez-Pelegrin, J. A.; Rubio, E. J. Chem. Soc., Chem. Commun. 1995, 665–666; (c) Lee, P. H.; Kim, J. S.; Kim, Y. C.; Kim, S. Tetrahedron Lett. 1993, 34, 7583–7586; (d) Davies, H. M. L.; Hu, B. J. Org. Chem. 1992, 57, 4309–4312.
- (a) Piccialli, V.; Graziano, M. L. Tetrahedron Lett. 2001,
 42, 93–95; (b) Graziano, M. L.; Piccialli, V. Tetrahedron Lett. 1999, 40, 8469–8470; (c) Graziano, M. L.; Lasalvia,
 M.; Piccialli, V.; Sica, D. Tetrahedron Lett. 1996, 37, 527–530.
- (a) Pohmakotr, M.; Takampon, A.; Ratchataphusit, J. Tetrahedron 1996, 52, 7149–7158; (b) Pohmakotr, M.; Takampon, A. Tetrahedron Lett. 1996, 37, 4585–4588; (c) Pohmakotr, M.; Ratchataphusit, J. Tetrahedron 1993, 49, 6473–6482; (d) Pohmakotr, M.; Pisutjaroenpong, S. Tetrahedron Lett. 1985, 26, 3613–3616.
- 6. The starting cyclopropylsulfoxide 1 could be readily obtained by oxidation (NaIO₄/MeOH/H₂O, 0°C to room temperature, overnight) of *trans*-1-[(2-methoxyethoxy)-methoxy]-2-(phenylsufanyl)cyclopropane, which was prepared according to the known procedure: Tanaka, K.; Uneme, H.; Matsui, S.; Kaji, A. *Bull. Chem. Soc. Jpn.* 1982, *55*, 2965–2972.
- Comparable yields of the recovered starting material 1 obtained from both lithiation conditions were observed.
 Occasionally, bond-cleavage of the phenylsulfinyl group leading to butyl phenyl sulfoxide occurred when compound 1 was lithiated by employing butyllithium at -78°C.
- 8. Irradiation of the methyl groups alpha to the phenylsulfinyl group of each diastereomer resulted in 2.8 and 3.5% enhancements of the cyclopropyl protons (δ 0.77 and 0.87 ppm) *cis* to the methyl groups, as well as 2.3 and 1.8% enhancements of one proton of -OCH₂O- group of each diastereomer.

9. For the preparation of 3-(phenylthio)-2-alkenal, see: Ogawa, A.; Takeba, M.; Kawakami, J.; Ryu, I.; Kambe, N.; Sonoda, N. *J. Am. Chem. Soc.* **1995**, *117*, 7564–7565 and Kuniyasu, H.; Ogawa, A.; Sonoda, N. *Tetrahedron Lett.* **1993**, *34*, 2491–2494.